Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Geon-Hong Kim 2 Articles
Characterization of Classification of Synthesized Ni Nanopowders by Pulsed Wire Evaporation Method
Joong-Hark Park, Geon-Hong Kim, Dong-Jin Lee, Soon-Jik Hong
J Powder Mater. 2017;24(5):389-394.   Published online October 1, 2017
DOI: https://doi.org/10.4150/KPMI.2017.24.5.389
  • 29 View
  • 0 Download
AbstractAbstract PDF

Ni wires with a diameter and length of 0.4 and 100 mm, respectively, and a purity of 99.9% are electrically exploded at 25 cycles per minute. The Ni nanopowders are successfully synthesized by a pulsed wire evaporation (PWE) method, in which Ar gas is used as the ambient gas. The characterization of the nanopowders is carried out using X-ray diffraction (XRD) and a high-resolution transmission electronmicroscope (HRTEM). The Ni nanopowders are classified for a multilayer ceramic condenser (MLCC) application using a type two Air-Centrifugal classifier (model: CNI, MP-250). The characterization of the classified Ni nanopowders are carried out using a scanning electron microscope (SEM) and particle size analysis (PSA) to observe the distribution and minimum classification point (minimum cutting point) of the nanopowders.

The Effects of MoS2 Addition on the Mechanical Properties of Fe-Cr-Mn-C-V P/M Alloy
Geon-Hong Kim, Hyun Seok Yang, Man-Sik Kong
J Powder Mater. 2014;21(4):294-300.   Published online August 1, 2014
DOI: https://doi.org/10.4150/KPMI.2014.21.4.294
  • 20 View
  • 0 Download
AbstractAbstract PDF

The connecting rod is one of the most important parts in automotive engines, transforming the reciprocal motion of a piston generated by internal combustion into the rotational motion of a crankshaft. Recent advances in high performance automobile engines demand corresponding technological breakthroughs in the materials for engine parts. In the present research, the powder metallurgy (P/M) process was used to replace conventional quenching and/or tempering processes for mass production and ultimately for more cost-efficient manufacturing of high strength connecting rods. The development of P/M alloy powder was undertaken not only to achieve the improvement in mechanical properties, but also to enhance the machinability of the P/M processed connecting rods. Specifically MoS2 powders were added as lubricants to non-normalizing Fe-Cr-Mn-V-C alloy powder to improve the post-sintering machinability. The effects of MoS2 addition on the microstructure, mechanical properties, and machining characteristics were investigated.


Journal of Powder Materials : Journal of Powder Materials